Amygdalo-hypothalamic circuit allows learned cues to override satiety and promote eating.
نویسندگان
چکیده
Organisms eat not only in a response to signals related to energy balance. Eating also occurs in response to "extrinsic," or environmental, signals, including learned cues. Such cues can modify feeding based on motivational value acquired through association with either rewarding or aversive events. We provide evidence that a specific brain system, involving connections between basolateral amygdala and the lateral hypothalamus, is crucial for allowing learned cues (signals that were paired with food delivery when the animal was hungry) to override satiety and promote eating in sated rats. In an assessment of second-order conditioning, we also found that disconnection of this circuitry had no effect on the ability of a conditioned cue to support new learning. Knowledge about neural systems through which food-associated cues specifically control feeding behavior provides a defined model for the study of learning that may be informative for understanding mechanisms that contribute to eating disorders and more moderate forms of overeating.
منابع مشابه
Control of food consumption by learned cues: a forebrain-hypothalamic network.
Motivation plays an important role in the control of food intake. This review will focus on recent findings using a neural systems analysis of a behavioral model for learned motivational control of eating. In this model, environmental cues that acquire motivational properties through Pavlovian conditioning can subsequently override satiety and promote eating in sated rats. Evidence will be pres...
متن کاملMedial prefrontal cortex is necessary for an appetitive contextual conditioned stimulus to promote eating in sated rats.
Motivation plays an important role in the control of food intake. A cue that acquires motivational properties through pairings with food consumption when an animal is hungry can override satiety and promote eating in sated rats. This phenomenon of conditioned potentiation of feeding is mediated by connections between the forebrain and the lateral hypothalamic area (LHA). In a recent study using...
متن کاملForebrain networks and the control of feeding by environmental learned cues.
The motivation to eat is driven by a complex sum of physiological and non-physiological influences computed by the brain. Physiological signals that inform the brain about energy and nutrient needs are the primary drivers, but environmental signals unrelated to energy balance also control appetite and eating. The two components could act in concert to support the homeostatic regulation of food ...
متن کاملLearning and the motivation to eat: forebrain circuitry.
Appetite and eating are not only controlled by energy needs, but also by extrinsic factors that are not directly related to energy balance. Environmental signals that acquire motivational properties through associative learning-learned cues-can override homeostatic signals and stimulate eating in sated states, or inhibit eating in states of hunger. Such influences are important, as environmenta...
متن کاملPeripheral and central signals in the control of eating in normal, obese and binge-eating human subjects.
The worldwide increase in the incidence of obesity is a consequence of a positive energy balance, with energy intake exceeding expenditure. The signalling systems that underlie appetite control are complex, and the present review highlights our current understanding of key components of these systems. The pattern of eating in obesity ranges from over-eating associated with binge-eating disorder...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 19 شماره
صفحات -
تاریخ انتشار 2002